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Abstract
These notes includes a self-contained collection of the most relevant results used in
generalization bounds and empirical process theory.
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1 Preliminaries and Notation

We work on a probability space (€2, A,P). A random (or stochastic) process is a collection of
random variables {X; : t € T'} indexed by a set 7. In many applications 7" is a subset of the
real line (time), but later we also consider general index sets equipped with a metric.

When T is ordered, a filtration is a family of sub-o-algebras {F; }ier with Fy, C F; C A for
s <t. A process {X; her is adapted to {F; her if X; is Fi-measurable for each ¢. The natural
filtration of {X,} is F; := o({ Xs}s<t)-

In discrete time, i.e., T'={0,1,2,... }, a sequence { My }r>o is a (discrete) martingale with
respect to {Fy} if My is Fp-measurable and E[M}, | F_1] = M} for all £ > 1. The increments
Xy := My — My then satisfy E[X} | Fi_1] = 0 and are called a martingale difference sequence.

2 Subgaussian Random Variables

Subgaussian random variables are those whose centered moment generating function is con-
trolled by that of a Gaussian. For a centered normal random variable G ~ N (0, 0?), we have
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The definition below abstracts this inequality as a convenient tail /concentration condition.

Definition 1 (Subgaussian random variable). Let X be a random variable, we define the
log-moment generating function 1 of X as

Y(A) = log B[e* X ~FX)]

and we say that X random variable is o2 —subgaussian if its log-moment generating function
satisfies ¥(\) < A?02/2 for all X € R, and the smallest 02 for which that holds is called the
variance proxy of X.

The following result is a variant of the Markov’s inequality written in terms of the log-
moment generating function.

Lemma 2 (Chernoff bound). Let X be a 0?—subgaussian random variable. Then, the following
inequality holds
—a

PX - X 2d <o {5}
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In particular, P[|X — EX| > a] < 2exp{—a?/20?%}.

Proof. We exponentiate inside the probability before applying Markov’s inequality. For any
A > 0, we have
]P’[X —EX > a] — ]P[e/\(XflEX) > eAa] < €7AGE[€/\(X7EX)] _ 61/1()\)7)\(1'

Since this holds for every A > 0, we can choose A to obtain the best bound. The optimal choice
is A = %. Substituting this into the inequality and using the bound ¢(\) < A?0*/2, we obtain

P -EX 2 d s {(5) 022 (5)of —en {55}
O

Lemma 3 (Maximal inequality). Let {Xj}i<x<n be a collection of o?-subgaussian random

variables with the same variance, satisfying E[X] =0 for all k = 1,...,n. Then
E { sup Xk} < y/20%logn.
1<k<n

Proof. Since —log x is convex, by Jensen’s inequality, we have for any A > 0

1 1
E {sup Xk] =E {— log (e suPk X‘“)] < Xlog . [e?5uPk Xk]
k

A
1 1 2,2 logn  Ao?
< B[] < =1 ( “/2>:— iy
_)\ogz e ]_)\ogne )\—1—2

Since this holds for every A > 0, we can now optimize over A on the right hand side. Differen-
tiating and setting it equal to zero, we obtain the minimum at A\ = —”%fg". Substituting this
value into the equation, we obtain the desired result

E { sup Xk} < V/20?logn.

1<k<n



Lemma 4 (Hoeffding lemma). Let X be a random variable such that a < X < b a.s. for some

a,b € R. Then,
B[N EXD] < N (b—a)* /5.

In other words, X is a (b — a)?/4-subgaussian random variable.

Proof. Let us deﬁnq the mean-centered random variable Y := X —E[X], thena <Y < b where
a:=a—E[X] and b := b — E[X]. By definition, log-moment generating function of X is given
by 1(\) = log E[e*Y], along with its derivatives

H) = Elé’[;iyf’ S0 = EI[ETefY] | (Elg[;iy]]>

We can interpret 1)”(\) as the variance of the random variable Y under another probability
measure. We define a new probability measure QQ by setting dQ := Ei—fy]d]}”. The definition is
well-posed because the Radon-Nikodym derivative % is positive and integrates to 1. From
this, we deduce that

Eqlg(Y)] = %

Therefore,

Varg(Y) = Eg[Y?] — (Eg[Y])? = E[Y?eM] B (E[Ye

] 2_ "
g7~ (o)~

We can bound the variance of Y as follows
Varg(Y) = Varg(Y — 2) < Eg[(Y — 2)?].

Since z can be any real number, we let z = (@ + b)/2. Given that @ <Y < b a.s., we obtain

b—a) _ (b—a)?
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Eql(Y — 2)°) = {Eql(2y —a— b7 <

Since Y is centered, 1(0) = 0 and ¢'(0) = E[Y] = 0. Using the bound ¢"(\) < (b;a)z and the
Fundamental Theorem of Calculus, we obtain

P 201, a 2
o) = [ [ v < X

Therefore, X is a o2-subgaussian random variable with 0% = (b — a)?/4. O

3 Martingale Concentration and Bounded Differences

Hoeffding’s lemma gives subgaussian bounds for bounded random variables. Combined with
a filtration and a martingale difference sequence, it yields concentration for dependent sums
(Azuma—Hoeffding). A standard application is McDiarmid’s bounded differences inequality for
functions of independent variables.



Lemma 5 (Azuma). Let {Xy}1<k<, be a stochastic process adapted to the natural filtration
{Fi}1<k<n, 1€, Frp = 0(Xq, ..., Xi). Assume that the random variables satisfy:

E[MF | Fpoy] < X2 as. forall \e R, k=1,...,n. (1)

where 07 > 0 is a (deterministic) variance proxy for Xj. Then, E[X} | ]-'k 1] =0 (and hence
E[X,] = 0) and the sum Y ;_, Xy is o?-subgaussian with variance proxy o? =3y ;_, of.

Proof. First, we prove that E[X}, | Fr—1] = 0. Since equality holdsin (1) at A = 0, differentiating
both sides at A = 0 yields

d 2 .2
)\Xk Fol< 2 xet2_g
d)\‘ | Fe] < 33l
Applying the same argument to — X}, gives E[— X}, | Fr_1] < 0, hence E[X} | Fr_1] = 0.
Next, we bound the moment generating function of S = Zle X,;. Since Si_q is Fp_1-
measurable, the tower property gives

E[Xk | Fi-1]

E[e**] = E [E [¢*F1 e | Fiy]] = B [ E [eM* | Froa]]
< e,\%g/z E[e’\s’“l].

Iterating this inequality yields E[e*o"] < X’ Zis197/2 = A0°/2 Since E[S,,] = 0, this is exactly
the subgaussian bound for .5,,. [

Corollary 6 (Azuma-Hoeffding inequality). Let {F)}1<k<, be a filtration and let {Xj}<k<n
be an adapted process such that E[Xy | Fr_1] = 0 for £ = 1,...,n. Assume that there exist
Fr_i1-measurable random variables Ay, By such that A, < X, < B, a.s.

Then, >,_, X is o®-subgaussian with o? = 1 > | ||By — Ax[|%. In particular, for every

t >0,
P zn:X >t <exp< 217 )
p>t) < —== .
> ket 1Be — Agll%

k=1

The same bound holds for P[>}, Xi| > ¢] up to an extra factor 2.

Proof. Conditionally on Fj_1, the bounds A, < X} < By are deterministic and E[ X}, | Fj_1] =
0. Applying Hoeffding’s Lemma 4 to this conditional distribution yields, for all A € R,

QB_AZ 2B_A 2
E[ez\Xk |fk—1} SeXp ()\( k k) ) Sexp (A H k kHoo)
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Therefore (1) holds Wlth of = ||Br — Ag||% /4, and Lemma 5 implies that > ;| X is o*
subgaussian with o = $ Y7, [| B, — Ayl/%.

The one-sided tail bound follows from Lemma 2 (applied to Y ;_, X)), and the two-sided
bound follows by also applying it to — Y _,_; Xj. O

Definition 7 (Discrete derivative). Let f € C(R",R). We define the discrete derivative of f
with respect to variable z; at the point x € R™ as follows:

Qkf(‘r) ‘= sup f(a;lv v s L1525 LAl - - - wxn) - H;ff<x17 v s T—15 25 D41y - - - 7'Tn)-
z



Theorem 8 (McDiarmid). Let Xi,..., X, be independent random variables and let f €
C(R™,R). Then, f(Xi,...,X,) is o®subgaussian with ¢ = 1>/ [|D,f||% where Dy f is
the discrete derivative (Definition 7).

Proof. Let Fj, := o(X1,..., X)) be the natural filtration and define the Doob martingale
M, =E[f(Xi,.... X)) | R, k=0,1,....n.

Set Yy, := My — My, for k =1,...,n. Then E[Y} | Fx_1] = 0 and the sum telescopes to

Y Vi=f(Xi,... X)) —EBf(X1,. ., X). (2)
k=1

Fix k € {1,...,n}. Define the F;_;-measurable function
hk(Z) = ]E[f(Xl, e 7Xk717 Z,Xk-+1’ e ,Xn> ’ -kal] .
By independence, My = hy(Xy) and My_1 = E[hg(Xy) | Fr—1]. Let

O = inf hy(z), Uy = sup hg(z).

Then Ek S Mk S U and ék S Mk—l S Uk, hence
Uy — My <Yy <u — M.

Therefore Ay, := {, — My_1 and By, := u, — Mj_1 are Fi_1-measurable and satisfy A, <Y, < B,
almost surely, with

Bk — Ak = Uk — Ek S E[@kf(Xl, e ,Xn) | ]:k—l] S ||©kf||oo

Applying the Azuma-Hoeffding inequality (Corollary 6) to Y ,_, Y; and using (2) concludes
the proof. O

4 Metric Entropy: Covering and Packing Numbers

To control suprema of random processes indexed by a metric space, we need a notion of the
“size” or “complexity” of the index set (F,d). Covering and packing numbers capture this
idea by counting how many metric balls are needed to cover a set, or how many well-separated
points it contains (Figure 1).

Definition 9 (e—net and covering number). A set N C E is called a e—net for (E,d) if for
every z € E, there exists m(x) € N such that d(z,7(x)) < e. The smallest cardinality of an
e-net for (E,d) is called the covering number

N(E,d,e) :=inf{|N|: N is an e—net for (£, d)}.

Definition 10 (e—packing and packing number). A set N C F is called an e—packing of (F,d)
if d(z,2") > e for every x,2’ € N, x # a’. The largest cardinality of an e—packing of (E,d) is
called the packing number

D(E,d,¢) :=sup{|N|: N is an e—packing of (E,d).}.
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(a) The ellipse represents E and the red dots are (b) The optimal packing problem in a
the elements of an e-net. The circles are balls of square using the blue balls.

radius € covering the set.

Figure 1: Packing vs Covering number

In the literature, the binary logarithm of the covering number of a set F is commonly
referred to as the e—entropy of F, denoted by

H.(E) :=log, N(E.d,e¢).

Similarly, the binary logarithm of the packing number is typically called the e—capacity of
E, defined as
C.(E) :=log, D(E,d,e).

The base-2 logarithm is common in information-theoretic contexts, where the natural unit is
the bit.

The following lemma illustrates the relationship between the covering number and the pack-
ing number.

Lemma (Duality between covering and packing number). For every ¢ > 0
D(E,d,2¢) < N(E,d,e) < D(E,d,e).

Proof. (1) Let D be a 2e—packing and let N be an e—net. For every z € D, choose 7w(x) € N
such that d(z,7(z)) < e. Then, for every 2’ € D such that x # 2/, we have

2¢ < d(z,2') < d(x,n(x)) +d(n(z),n(z") + d(m(z), 2") < 2e + d(w(x), (")),

which implies that 7(z) # 7(2’) (see Figure 2). Thus, the function 7 : D — N is injective, and
thus, |D| < |N|. In other words, D(F,d,2¢) < N(FE,d,€).

(2) Let D be a mazimal e—packing with |D| = D(E,d, €). We claim that D is necessarily an
e—net. Indeed, suppose for contradiction that there exists a point € E such that d(z,z’) > €
for every 2’ € D. This would imply that D U {z} is a larger e—packing, contradicting the
maximality of D. Therefore, every point in £ must be within a distance at most of € from some
point in D, confirming that D is an e—net. O



Figure 2: distance between x and z’.

We are now ready to establish an upper bound on the covering number of the Euclidean
ball B} with respect to the Euclidean distance. The proof of this fundamental result employs
a clever technique known as a volume argument.

Lemma. Let BY be the n-dimensional Euclidean ball centered at zero with radius 1, i.e
BY :={z € R": ||z|l2 < 1}. Then, N(BY,|| - ||2,€) =1 for ¢ > 1 and

1\" 3\"
<—> < N(B3, || - [l2,€) < (—) for 0 <e< 1.
€ €

Proof. Case € > 1: For € > 1, we have N(BZ, || - ||2,€) = 1 since {0} is an e-net: [|z|s <1 <€
for every x € BY.

Case 0 < € < 1: We begin with the upper bound. Let D be a 2e-packing of B}. Since
|z — |2 > 2¢ for all x # 2’ in D, the balls {B(z,¢) : € D} are disjoint. Moreover, for any
x € BY we have B(x,e) C B(0,1+ €). Therefore,

Z)\ (x,€) —A(UBQEE)ﬁ)\(B(O,l—i-e))

where A\ denotes Lebesgue measure on R”. Using homogeneity A(B(0,a)) = a"A(B(0,1)), we
obtain

IDIA(B(0,€) < AB(0,1+¢)) = [D|"A(B(0,1)) < (1 + &)"\(B(0,1)).

Therefore,
1 n
D| < ( —l—e)
€

We have established that for every 2e-packing D of BY, we obtain an upper bound for D(BY, || -
||l2, 2€). This leads to the following chain of inequalities

Lemma 4 1\" 3\"
N(By, | - |l2;2¢) < D(B, |- ]2;2¢) < (1 + —) < (—) for 2e < 1.
€

2¢

Relabeling 2¢ as € completes the proof.
We proceed similarly to obtain the lower bound. Let N be an e—net for BY. Then,

A(BS)S)\(U xe><2)\ = [N A(B(0,¢)).

zEN zeN
Hence, .
> AZO)_ (1"
A(B(0,¢€)) €
This inequality holds for every e-net N, so we conclude that N(BY, | - ||2,€) > (1/€)™. O
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The following Lemma finds a bound for the growing rate of the e—entropy of the Sobolev
space H™™!. The proof can be found in [Nickl and Pétscher, 2007, Corollary 4].

Lemma (e-Entropy of H™™(Q,R%)). Let Q C R? be a Lipschitz domain. For m > 1, one
has
IOg N<BHm+1(Q)(1)7 H ’ HHm“'l(Q)> 6) = Oe—)O(G_dz/(m+l)).

5 Subgaussian Processes and Chaining

We now return to random processes indexed by a metric space (7,d). Dudley’s inequality
bounds E[sup,c; X¢| for a subgaussian process in terms of the metric entropy of (7', d), as
developed in the previous section.

Definition 11 (Subgaussian process). A random process {X;}ier on a metric space (7', d) is
called subgaussian if E[X;] =0 for all ¢t € T and

E[eMXe—Xe)] < Mlts)*/2 forallt,seT, A eR. (3)

Notice that for every s,t € T, the random variable X, — X is a d(t, s)*-subgaussian random
variable.

Definition (Separable process). A random process {X;}ier is called separable (with respect
to d) if there exists a countable set Ty C T' such that for every ¢ € T there exists a sequence
{tn}nen C Ty with d(t,,t) — 0 and X,, — X, almost surely.

Remark. The assumption of separability is almost always satisfied. For example, assuming
that t — X, is continuous and T is a separable metric space (as is the case in this manuscript),
then we can take Ty to be any countable dense subset of T', allowing us to verify the separability
assumption.

For the next theorem, we need sup,. X; to be measurable. If T"is uncountable, the pointwise
supremum need not be measurable in general. Under separability, however, we have sup, ., X =
supseq, X¢ almost surely, and the right-hand side is a supremum of countably many measurable
random variables, hence measurable.

Theorem 12 (Dudley). Let {X;}ier be a separable subgaussian process in the metric space
(T,d). Then,

E {Sup Xt] <6 27%\/log N(T,d, 27%).

teT ke

Proof. We begin by proving the result for the case where |T'| < co. Let kg € Z be the largest
integer such that 27% > diam(7). It is clear that for every ¢ty € T, the set Ny := {to} forms a
27% —net and mo(t) = to.

For k > kg, let Nj be a 27%—net such that |N,| = N(T,d,27%). We denote m(t) as the
element in N, that satisfies d(t, 7(t)) < 27%. Using a chaining argument up to the scale 27",
we proceed as follows

E [sup Xt} =E

teT

sup {Xwoos) + < > X — Xnk_l(w) + X — X, (t>}]

teT k=ko+1

te

<EX,)+ 3 E {sup{xma - Xmm}} +E [sup{xt X }} .
k=ko+1 T teT
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By definition of subgaussian process, E[X;,] = 0. Since |T'| < oo, we can choose n sufficiently
large so that N, = T, and hence 7,(t) = ¢, meaning that the third term vanishes. Next,
we bound the second term. By definition, X, ) — Xx, ,(t) is a d(m(t), mx—1(t))-subgaussian
random variable. We can readily estimate the variance,

d(mp(t), me_1 (1)) < d(m(t),t) + d(t, mp_1(t)) < 27F 4+ 27D =3 x 27F,

Moreover, we can control the number of terms in the sum, note that {Xﬁk(t) — X5 it € T}
contains at most |Ni||Ny_1| which is bounded by |N.|? terms. Applying Maximal Inequality
Lemma 3 to these terms, we obtain

E{supXt] < Z V2d(m(t), me_1(t))2 log | N |2 < 6 Z 27%/log | Ny|

teT M Rt

<6 >  27%/logN(T,d,27).
k‘=k0+1

To prove the result when T is infinite, let Ty = {t1,t2,...} C T be a countable set witnessing
separability, so that sup,.p X; = sup,cq Xy a.s. For m > 1 let T, := {t1,...,ty}. Then
Supser,, Xt T supyeq, X¢ almost surely, and by monotone convergence,

E {sup Xt} =K {sup Xt} =supE {sup Xt} .
teT teTo m>1  [t€Tm

Applying the finite case to each T,, and using N(T,,,d,€) < N(T,d,¢€) yields the same bound.
]

Corollary (Entropy integral). Let {X;}er be a separable subgaussian process on the metric

space (T,d). Then,
E {supXt} < 12/ V1og N(T,d, €)de.
0

teT

Proof. Since N(T,d,-) is decreasing, we obtain the following chains of inequalities

o—k
> 27"\ log N(T,d,27%) =2 Vog N(T, d, 2-%)de

kez kez Y27 F !
2—l€

< 22/ V1og N(T, d, ¢)de
kez Y 27F!

:2/ V1og N(T,d, €)de.
0
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