

Notes on Generalization Theory

Daniel López Montero

January 4, 2026

Abstract

These notes includes a self-contained collection of the most relevant results used in generalization bounds and empirical process theory.

Definition: Subgaussian random variable	2
Lemma: Chernoff bound	2
Lemma: Maximal inequality	2
Lemma: Hoeffding lemma	3
Lemma: Azuma	3
Corollary: Azuma-Hoeffding inequality	4
Definition: Discrete derivative	4
Theorem: McDiarmid	4
Definition: ϵ -net and covering number	5
Definition: ϵ -packing and packing number	5
Definition: Subgaussian process	8
Theorem: Dudley	8

1 Preliminaries and Notation

We work on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$. A *random* (or *stochastic*) process is a collection of random variables $\{X_t : t \in T\}$ indexed by a set T . In many applications T is a subset of the real line (time), but later we also consider general index sets equipped with a metric.

When T is ordered, a filtration is a family of sub- σ -algebras $\{\mathcal{F}_t\}_{t \in T}$ with $\mathcal{F}_s \subseteq \mathcal{F}_t \subseteq \mathcal{A}$ for $s \leq t$. A process $\{X_t\}_{t \in T}$ is *adapted* to $\{\mathcal{F}_t\}_{t \in T}$ if X_t is \mathcal{F}_t -measurable for each t . The *natural filtration* of $\{X_t\}$ is $\mathcal{F}_t := \sigma(\{X_s\}_{s \leq t})$.

In discrete time, i.e., $T = \{0, 1, 2, \dots\}$, a sequence $\{M_k\}_{k \geq 0}$ is a (discrete) *martingale* with respect to $\{\mathcal{F}_k\}$ if M_k is \mathcal{F}_k -measurable and $\mathbb{E}[M_k | \mathcal{F}_{k-1}] = M_{k-1}$ for all $k \geq 1$. The increments $X_k := M_k - M_{k-1}$ then satisfy $\mathbb{E}[X_k | \mathcal{F}_{k-1}] = 0$ and are called a *martingale difference sequence*.

2 Subgaussian Random Variables

Subgaussian random variables are those whose centered moment generating function is controlled by that of a Gaussian. For a centered normal random variable $G \sim \mathcal{N}(0, \sigma^2)$, we have

$$\mathbb{E}[e^{\lambda G}] = e^{\sigma^2 \lambda^2/2}.$$

The definition below abstracts this inequality as a convenient tail/concentration condition.

Definition 1 (Subgaussian random variable). Let X be a random variable, we define the *log-moment generating function* ψ of X as

$$\psi(\lambda) := \log \mathbb{E}[e^{\lambda(X - \mathbb{E}[X])}]$$

and we say that X random variable is σ^2 -subgaussian if its log-moment generating function satisfies $\psi(\lambda) \leq \lambda^2\sigma^2/2$ for all $\lambda \in \mathbb{R}$, and the smallest σ^2 for which that holds is called the variance proxy of X .

The following result is a variant of the Markov's inequality written in terms of the log-moment generating function.

Lemma 2 (Chernoff bound). Let X be a σ^2 -subgaussian random variable. Then, the following inequality holds

$$\mathbb{P}[X - \mathbb{E}X \geq a] \leq \exp \left\{ \frac{-a^2}{2\sigma^2} \right\}.$$

In particular, $\mathbb{P}[|X - \mathbb{E}X| \geq a] \leq 2 \exp\{-a^2/2\sigma^2\}$.

Proof. We exponentiate inside the probability before applying Markov's inequality. For any $\lambda \geq 0$, we have

$$\mathbb{P}[X - \mathbb{E}X \geq a] = \mathbb{P}[e^{\lambda(X - \mathbb{E}X)} \geq e^{\lambda a}] \leq e^{-\lambda a} \mathbb{E}[e^{\lambda(X - \mathbb{E}X)}] = e^{\psi(\lambda) - \lambda a}.$$

Since this holds for every $\lambda \geq 0$, we can choose λ to obtain the best bound. The optimal choice is $\lambda = \frac{a}{\sigma^2}$. Substituting this into the inequality and using the bound $\psi(\lambda) \leq \lambda^2\sigma^2/2$, we obtain

$$\mathbb{P}[X - \mathbb{E}X \geq a] \leq \exp \left\{ \left(\frac{a}{\sigma^2} \right)^2 \sigma^2/2 - \left(\frac{a}{\sigma^2} \right) a \right\} = \exp \left\{ \frac{-a^2}{2\sigma^2} \right\}.$$

□

Lemma 3 (Maximal inequality). Let $\{X_k\}_{1 \leq k \leq n}$ be a collection of σ^2 -subgaussian random variables with the same variance, satisfying $\mathbb{E}[X_k] = 0$ for all $k = 1, \dots, n$. Then

$$\mathbb{E} \left[\sup_{1 \leq k \leq n} X_k \right] \leq \sqrt{2\sigma^2 \log n}.$$

Proof. Since $-\log x$ is convex, by Jensen's inequality, we have for any $\lambda > 0$

$$\begin{aligned} \mathbb{E} \left[\sup_k X_k \right] &= \mathbb{E} \left[\frac{1}{\lambda} \log(e^{\lambda \sup_k X_k}) \right] \leq \frac{1}{\lambda} \log \mathbb{E}[e^{\lambda \sup_k X_k}] \\ &\leq \frac{1}{\lambda} \log \sum_{1 \leq k \leq n} \mathbb{E}[e^{\lambda X_k}] \leq \frac{1}{\lambda} \log \left(n e^{\lambda^2 \sigma^2/2} \right) = \frac{\log n}{\lambda} + \frac{\lambda \sigma^2}{2}. \end{aligned}$$

Since this holds for every $\lambda > 0$, we can now optimize over λ on the right hand side. Differentiating and setting it equal to zero, we obtain the minimum at $\lambda = \frac{\sqrt{2 \log n}}{\sigma}$. Substituting this value into the equation, we obtain the desired result

$$\mathbb{E} \left[\sup_{1 \leq k \leq n} X_k \right] \leq \sqrt{2\sigma^2 \log n}.$$

□

Lemma 4 (Hoeffding lemma). Let X be a random variable such that $a \leq X \leq b$ a.s. for some $a, b \in \mathbb{R}$. Then,

$$\mathbb{E}[e^{\lambda(X - \mathbb{E}[X])}] \leq e^{\lambda^2(b-a)^2/8}.$$

In other words, X is a $(b-a)^2/4$ -subgaussian random variable.

Proof. Let us define the mean-centered random variable $Y := X - \mathbb{E}[X]$, then $\tilde{a} \leq Y \leq \tilde{b}$ where $\tilde{a} := a - \mathbb{E}[X]$ and $\tilde{b} := b - \mathbb{E}[X]$. By definition, log-moment generating function of X is given by $\psi(\lambda) = \log \mathbb{E}[e^{\lambda Y}]$, along with its derivatives

$$\psi'(\lambda) = \frac{\mathbb{E}[Y e^{\lambda Y}]}{\mathbb{E}[e^{\lambda Y}]}, \quad \psi''(\lambda) = \frac{\mathbb{E}[Y^2 e^{\lambda Y}]}{\mathbb{E}[e^{\lambda Y}]} - \left(\frac{\mathbb{E}[Y e^{\lambda Y}]}{\mathbb{E}[e^{\lambda Y}]} \right)^2.$$

We can interpret $\psi''(\lambda)$ as the variance of the random variable Y under another probability measure. We define a new probability measure \mathbb{Q} by setting $d\mathbb{Q} := \frac{e^{\lambda Y}}{\mathbb{E}[e^{\lambda Y}]} d\mathbb{P}$. The definition is well-posed because the Radon-Nikodym derivative $\frac{e^{\lambda Y}}{\mathbb{E}[e^{\lambda Y}]}$ is positive and integrates to 1. From this, we deduce that

$$\mathbb{E}_{\mathbb{Q}}[g(Y)] = \frac{\mathbb{E}[g(Y) e^{\lambda Y}]}{\mathbb{E}[e^{\lambda Y}]}.$$

Therefore,

$$\text{Var}_{\mathbb{Q}}(Y) = \mathbb{E}_{\mathbb{Q}}[Y^2] - (\mathbb{E}_{\mathbb{Q}}[Y])^2 = \frac{\mathbb{E}[Y^2 e^{\lambda Y}]}{\mathbb{E}[e^{\lambda Y}]} - \left(\frac{\mathbb{E}[Y e^{\lambda Y}]}{\mathbb{E}[e^{\lambda Y}]} \right)^2 = \psi''(\lambda).$$

We can bound the variance of Y as follows

$$\text{Var}_{\mathbb{Q}}(Y) = \text{Var}_{\mathbb{Q}}(Y - z) \leq \mathbb{E}_{\mathbb{Q}}[(Y - z)^2].$$

Since z can be any real number, we let $z = (\tilde{a} + \tilde{b})/2$. Given that $\tilde{a} \leq Y \leq \tilde{b}$ a.s., we obtain

$$\mathbb{E}_{\mathbb{Q}}[(Y - z)^2] = \frac{1}{4} \mathbb{E}_{\mathbb{Q}}[(2Y - \tilde{a} - \tilde{b})^2] \leq \frac{(\tilde{b} - \tilde{a})^2}{4} = \frac{(b - a)^2}{4}.$$

Since Y is centered, $\psi(0) = 0$ and $\psi'(0) = \mathbb{E}[Y] = 0$. Using the bound $\psi''(\lambda) \leq \frac{(b-a)^2}{4}$ and the Fundamental Theorem of Calculus, we obtain

$$\psi(\lambda) = \int_0^\lambda \int_0^\mu \psi''(\rho) d\rho d\mu \leq \frac{\lambda^2(b-a)^2}{8}.$$

Therefore, X is a σ^2 -subgaussian random variable with $\sigma^2 = (b-a)^2/4$. \square

3 Martingale Concentration and Bounded Differences

Hoeffding's lemma gives subgaussian bounds for bounded random variables. Combined with a filtration and a martingale difference sequence, it yields concentration for dependent sums (Azuma–Hoeffding). A standard application is McDiarmid's bounded differences inequality for functions of independent variables.

Lemma 5 (Azuma). Let $\{X_k\}_{1 \leq k \leq n}$ be a stochastic process adapted to the natural filtration $\{\mathcal{F}_k\}_{1 \leq k \leq n}$, i.e., $\mathcal{F}_k = \sigma(X_1, \dots, X_k)$. Assume that the random variables satisfy:

$$\mathbb{E}[e^{\lambda X_k} | \mathcal{F}_{k-1}] \leq e^{\lambda^2 \sigma_k^2 / 2} \quad a.s. \quad \text{for all } \lambda \in \mathbb{R}, k = 1, \dots, n. \quad (1)$$

where $\sigma_k^2 \geq 0$ is a (deterministic) variance proxy for X_k . Then, $\mathbb{E}[X_k | \mathcal{F}_{k-1}] = 0$ (and hence $\mathbb{E}[X_k] = 0$) and the sum $\sum_{k=1}^n X_k$ is σ^2 -subgaussian with variance proxy $\sigma^2 := \sum_{k=1}^n \sigma_k^2$.

Proof. First, we prove that $\mathbb{E}[X_k | \mathcal{F}_{k-1}] = 0$. Since equality holds in (1) at $\lambda = 0$, differentiating both sides at $\lambda = 0$ yields

$$\mathbb{E}[X_k | \mathcal{F}_{k-1}] = \frac{d}{d\lambda} \Big|_{\lambda=0} \mathbb{E}[e^{\lambda X_k} | \mathcal{F}_{k-1}] \leq \frac{d}{d\lambda} \Big|_{\lambda=0} e^{\lambda^2 \sigma_k^2 / 2} = 0.$$

Applying the same argument to $-X_k$ gives $\mathbb{E}[-X_k | \mathcal{F}_{k-1}] \leq 0$, hence $\mathbb{E}[X_k | \mathcal{F}_{k-1}] = 0$.

Next, we bound the moment generating function of $S_k := \sum_{i=1}^k X_i$. Since S_{k-1} is \mathcal{F}_{k-1} -measurable, the tower property gives

$$\begin{aligned} \mathbb{E}[e^{\lambda S_k}] &= \mathbb{E}[\mathbb{E}[e^{\lambda S_{k-1}} e^{\lambda X_k} | \mathcal{F}_{k-1}]] = \mathbb{E}[e^{\lambda S_{k-1}} \mathbb{E}[e^{\lambda X_k} | \mathcal{F}_{k-1}]] \\ &\leq e^{\lambda^2 \sigma_k^2 / 2} \mathbb{E}[e^{\lambda S_{k-1}}]. \end{aligned}$$

Iterating this inequality yields $\mathbb{E}[e^{\lambda S_n}] \leq e^{\lambda^2 \sum_{i=1}^n \sigma_i^2 / 2} = e^{\lambda^2 \sigma^2 / 2}$. Since $\mathbb{E}[S_n] = 0$, this is exactly the subgaussian bound for S_n . \square

Corollary 6 (Azuma-Hoeffding inequality). Let $\{\mathcal{F}_k\}_{1 \leq k \leq n}$ be a filtration and let $\{X_k\}_{1 \leq k \leq n}$ be an adapted process such that $\mathbb{E}[X_k | \mathcal{F}_{k-1}] = 0$ for $k = 1, \dots, n$. Assume that there exist \mathcal{F}_{k-1} -measurable random variables A_k, B_k such that $A_k \leq X_k \leq B_k$ a.s.

Then, $\sum_{k=1}^n X_k$ is σ^2 -subgaussian with $\sigma^2 = \frac{1}{4} \sum_{k=1}^n \|B_k - A_k\|_\infty^2$. In particular, for every $t \geq 0$,

$$\mathbb{P}\left[\sum_{k=1}^n X_k \geq t\right] \leq \exp\left(-\frac{2t^2}{\sum_{k=1}^n \|B_k - A_k\|_\infty^2}\right).$$

The same bound holds for $\mathbb{P}[|\sum_{k=1}^n X_k| \geq t]$ up to an extra factor 2.

Proof. Conditionally on \mathcal{F}_{k-1} , the bounds $A_k \leq X_k \leq B_k$ are deterministic and $\mathbb{E}[X_k | \mathcal{F}_{k-1}] = 0$. Applying Hoeffding's Lemma 4 to this conditional distribution yields, for all $\lambda \in \mathbb{R}$,

$$\mathbb{E}[e^{\lambda X_k} | \mathcal{F}_{k-1}] \leq \exp\left(\frac{\lambda^2 (B_k - A_k)^2}{8}\right) \leq \exp\left(\frac{\lambda^2 \|B_k - A_k\|_\infty^2}{8}\right).$$

Therefore (1) holds with $\sigma_k^2 = \|B_k - A_k\|_\infty^2 / 4$, and Lemma 5 implies that $\sum_{k=1}^n X_k$ is σ^2 -subgaussian with $\sigma^2 = \frac{1}{4} \sum_{k=1}^n \|B_k - A_k\|_\infty^2$.

The one-sided tail bound follows from Lemma 2 (applied to $\sum_{k=1}^n X_k$), and the two-sided bound follows by also applying it to $-\sum_{k=1}^n X_k$. \square

Definition 7 (Discrete derivative). Let $f \in C(\mathbb{R}^n, \mathbb{R})$. We define the *discrete derivative* of f with respect to variable x_k at the point $x \in \mathbb{R}^n$ as follows:

$$\mathfrak{D}_k f(x) := \sup_z f(x_1, \dots, x_{k-1}, z, x_{k+1}, \dots, x_n) - \inf_z f(x_1, \dots, x_{k-1}, z, x_{k+1}, \dots, x_n).$$

Theorem 8 (McDiarmid). Let X_1, \dots, X_n be independent random variables and let $f \in C(\mathbb{R}^n, \mathbb{R})$. Then, $f(X_1, \dots, X_n)$ is σ^2 -subgaussian with $\sigma^2 = \frac{1}{4} \sum_{k=1}^n \|\mathfrak{D}_k f\|_\infty^2$ where $\mathfrak{D}_k f$ is the discrete derivative (Definition 7).

Proof. Let $\mathcal{F}_k := \sigma(X_1, \dots, X_k)$ be the natural filtration and define the Doob martingale

$$M_k := \mathbb{E}[f(X_1, \dots, X_n) \mid \mathcal{F}_k], \quad k = 0, 1, \dots, n.$$

Set $Y_k := M_k - M_{k-1}$ for $k = 1, \dots, n$. Then $\mathbb{E}[Y_k \mid \mathcal{F}_{k-1}] = 0$ and the sum telescopes to

$$\sum_{k=1}^n Y_k = f(X_1, \dots, X_n) - \mathbb{E}f(X_1, \dots, X_n). \quad (2)$$

Fix $k \in \{1, \dots, n\}$. Define the \mathcal{F}_{k-1} -measurable function

$$h_k(z) := \mathbb{E}[f(X_1, \dots, X_{k-1}, z, X_{k+1}, \dots, X_n) \mid \mathcal{F}_{k-1}].$$

By independence, $M_k = h_k(X_k)$ and $M_{k-1} = \mathbb{E}[h_k(X_k) \mid \mathcal{F}_{k-1}]$. Let

$$\ell_k := \inf_z h_k(z), \quad u_k := \sup_z h_k(z).$$

Then $\ell_k \leq M_k \leq u_k$ and $\ell_k \leq M_{k-1} \leq u_k$, hence

$$\ell_k - M_{k-1} \leq Y_k \leq u_k - M_{k-1}.$$

Therefore $A_k := \ell_k - M_{k-1}$ and $B_k := u_k - M_{k-1}$ are \mathcal{F}_{k-1} -measurable and satisfy $A_k \leq Y_k \leq B_k$ almost surely, with

$$B_k - A_k = u_k - \ell_k \leq \mathbb{E}[\mathfrak{D}_k f(X_1, \dots, X_n) \mid \mathcal{F}_{k-1}] \leq \|\mathfrak{D}_k f\|_\infty.$$

Applying the Azuma–Hoeffding inequality (Corollary 6) to $\sum_{k=1}^n Y_k$ and using (2) concludes the proof. \square

4 Metric Entropy: Covering and Packing Numbers

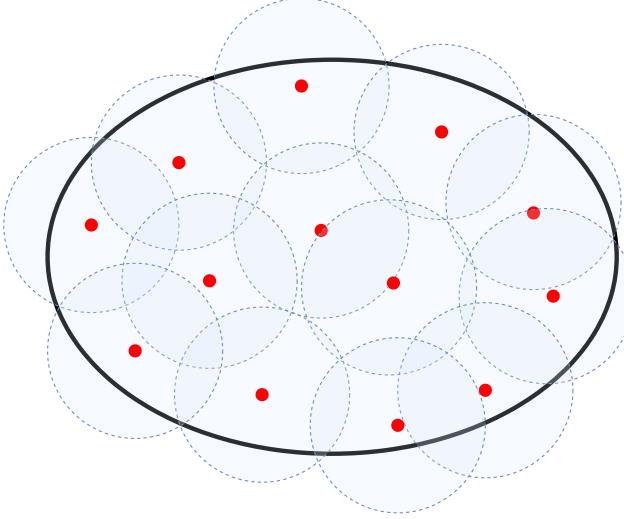
To control suprema of random processes indexed by a metric space, we need a notion of the “size” or “complexity” of the index set (E, d) . Covering and packing numbers capture this idea by counting how many metric balls are needed to cover a set, or how many well-separated points it contains (Figure 1).

Definition 9 (ϵ –net and covering number). A set $N \subseteq E$ is called a ϵ –net for (E, d) if for every $x \in E$, there exists $\pi(x) \in N$ such that $d(x, \pi(x)) \leq \epsilon$. The smallest cardinality of an ϵ -net for (E, d) is called the *covering number*

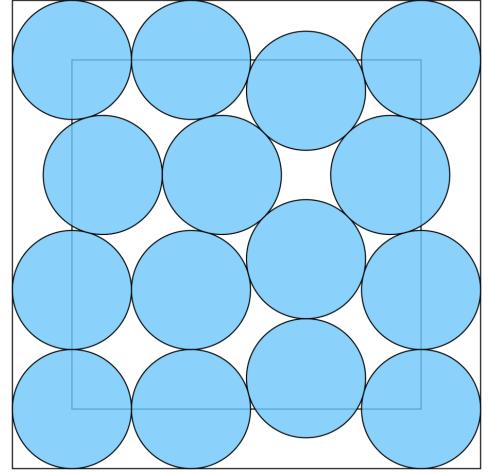
$$N(E, d, \epsilon) := \inf\{|N| : N \text{ is an } \epsilon\text{--net for } (E, d)\}.$$

Definition 10 (ϵ –packing and packing number). A set $N \subseteq E$ is called an ϵ –packing of (E, d) if $d(x, x') > \epsilon$ for every $x, x' \in N$, $x \neq x'$. The largest cardinality of an ϵ –packing of (E, d) is called the *packing number*

$$D(E, d, \epsilon) := \sup\{|N| : N \text{ is an } \epsilon\text{--packing of } (E, d)\}.$$



(a) The ellipse represents E and the red dots are the elements of an ϵ -net. The circles are balls of radius ϵ covering the set.



(b) The optimal packing problem in a square using the blue balls.

Figure 1: Packing vs Covering number

In the literature, the binary logarithm of the covering number of a set E is commonly referred to as the **ϵ -entropy** of E , denoted by

$$H_\epsilon(E) := \log_2 N(E, d, \epsilon).$$

Similarly, the binary logarithm of the packing number is typically called the **ϵ -capacity** of E , defined as

$$C_\epsilon(E) := \log_2 D(E, d, \epsilon).$$

The base-2 logarithm is common in information-theoretic contexts, where the natural unit is the bit.

The following lemma illustrates the relationship between the covering number and the packing number.

Lemma (Duality between covering and packing number). For every $\epsilon > 0$

$$D(E, d, 2\epsilon) \leq N(E, d, \epsilon) \leq D(E, d, \epsilon).$$

Proof. (1) Let D be a 2ϵ -packing and let N be an ϵ -net. For every $x \in D$, choose $\pi(x) \in N$ such that $d(x, \pi(x)) \leq \epsilon$. Then, for every $x' \in D$ such that $x \neq x'$, we have

$$2\epsilon < d(x, x') \leq d(x, \pi(x)) + d(\pi(x), \pi(x')) + d(\pi(x'), x') \leq 2\epsilon + d(\pi(x), \pi(x')),$$

which implies that $\pi(x) \neq \pi(x')$ (see Figure 2). Thus, the function $\pi : D \rightarrow N$ is injective, and thus, $|D| \leq |N|$. In other words, $D(E, d, 2\epsilon) \leq N(E, d, \epsilon)$.

(2) Let D be a *maximal* ϵ -packing with $|D| = D(E, d, \epsilon)$. We claim that D is necessarily an ϵ -net. Indeed, suppose for contradiction that there exists a point $x \in E$ such that $d(x, x') > \epsilon$ for every $x' \in D$. This would imply that $D \cup \{x\}$ is a *larger* ϵ -packing, contradicting the maximality of D . Therefore, every point in E must be within a distance at most of ϵ from some point in D , confirming that D is an ϵ -net. \square

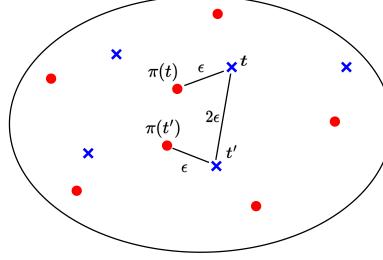


Figure 2: distance between x and x' .

We are now ready to establish an upper bound on the covering number of the Euclidean ball B_2^n with respect to the Euclidean distance. The proof of this fundamental result employs a clever technique known as a *volume argument*.

Lemma. Let B_2^n be the n -dimensional Euclidean ball centered at zero with radius 1, i.e., $B_2^n := \{x \in \mathbb{R}^n : \|x\|_2 < 1\}$. Then, $N(B_2^n, \|\cdot\|_2, \epsilon) = 1$ for $\epsilon \geq 1$ and

$$\left(\frac{1}{\epsilon}\right)^n \leq N(B_2^n, \|\cdot\|_2, \epsilon) \leq \left(\frac{3}{\epsilon}\right)^n \quad \text{for } 0 < \epsilon < 1.$$

Proof. Case $\epsilon \geq 1$: For $\epsilon \geq 1$, we have $N(B_2^n, \|\cdot\|_2, \epsilon) = 1$ since $\{0\}$ is an ϵ -net: $\|x\|_2 < 1 \leq \epsilon$ for every $x \in B_2^n$.

Case $0 < \epsilon < 1$: We begin with the upper bound. Let D be a 2ϵ -packing of B_2^n . Since $\|x - x'\|_2 > 2\epsilon$ for all $x \neq x'$ in D , the balls $\{B(x, \epsilon) : x \in D\}$ are disjoint. Moreover, for any $x \in B_2^n$ we have $B(x, \epsilon) \subseteq B(0, 1 + \epsilon)$. Therefore,

$$\sum_{x \in D} \lambda(B(x, \epsilon)) = \lambda\left(\bigcup_{x \in D} B(x, \epsilon)\right) \leq \lambda(B(0, 1 + \epsilon))$$

where λ denotes Lebesgue measure on \mathbb{R}^n . Using homogeneity $\lambda(B(0, \alpha)) = \alpha^n \lambda(B(0, 1))$, we obtain

$$|D| \lambda(B(0, \epsilon)) \leq \lambda(B(0, 1 + \epsilon)) \quad \Rightarrow \quad |D| \epsilon^n \lambda(B(0, 1)) \leq (1 + \epsilon)^n \lambda(B(0, 1)).$$

Therefore,

$$|D| \leq \left(\frac{1 + \epsilon}{\epsilon}\right)^n.$$

We have established that for every 2ϵ -packing D of B_2^n , we obtain an upper bound for $D(B_2^n, \|\cdot\|_2, 2\epsilon)$. This leads to the following chain of inequalities

$$N(B_2^n, \|\cdot\|_2, 2\epsilon) \stackrel{\text{Lemma 4}}{\leq} D(B_2^n, \|\cdot\|_2, 2\epsilon) \leq \left(1 + \frac{1}{\epsilon}\right)^n \leq \left(\frac{3}{2\epsilon}\right)^n \quad \text{for } 2\epsilon < 1.$$

Relabeling 2ϵ as ϵ completes the proof.

We proceed similarly to obtain the lower bound. Let N be an ϵ -net for B_2^n . Then,

$$\lambda(B_2^n) \leq \lambda\left(\bigcup_{x \in N} B(x, \epsilon)\right) \leq \sum_{x \in N} \lambda(B(x, \epsilon)) = |N| \lambda(B(0, \epsilon)).$$

Hence,

$$|N| \geq \frac{\lambda(B(0, 1))}{\lambda(B(0, \epsilon))} = \left(\frac{1}{\epsilon}\right)^n.$$

This inequality holds for every ϵ -net N , so we conclude that $N(B_2^n, \|\cdot\|_2, \epsilon) \geq (1/\epsilon)^n$. \square

The following Lemma finds a bound for the growing rate of the ϵ -entropy of the Sobolev space H^{m+1} . The proof can be found in [Nickl and Pötscher, 2007, Corollary 4].

Lemma (ϵ -Entropy of $H^{m+1}(\Omega, \mathbb{R}^{d_2})$). Let $\Omega \subseteq \mathbb{R}^{d_2}$ be a Lipschitz domain. For $m \geq 1$, one has

$$\log N(B_{H^{m+1}(\Omega)}(1), \|\cdot\|_{H^{m+1}(\Omega)}, \epsilon) = \mathcal{O}_{\epsilon \rightarrow 0}(\epsilon^{-d_2/(m+1)}).$$

5 Subgaussian Processes and Chaining

We now return to random processes indexed by a metric space (T, d) . Dudley's inequality bounds $\mathbb{E}[\sup_{t \in T} X_t]$ for a subgaussian process in terms of the metric entropy of (T, d) , as developed in the previous section.

Definition 11 (Subgaussian process). A random process $\{X_t\}_{t \in T}$ on a metric space (T, d) is called *subgaussian* if $\mathbb{E}[X_t] = 0$ for all $t \in T$ and

$$\mathbb{E}[e^{\lambda(X_t - X_s)}] \leq e^{\lambda^2 d(t, s)^2/2} \quad \text{for all } t, s \in T, \lambda \in \mathbb{R}. \quad (3)$$

Notice that for every $s, t \in T$, the random variable $X_t - X_s$ is a $d(t, s)^2$ -subgaussian random variable.

Definition (Separable process). A random process $\{X_t\}_{t \in T}$ is called separable (with respect to d) if there exists a countable set $T_0 \subseteq T$ such that for every $t \in T$ there exists a sequence $\{t_n\}_{n \in \mathbb{N}} \subseteq T_0$ with $d(t_n, t) \rightarrow 0$ and $X_{t_n} \rightarrow X_t$ almost surely.

Remark. The assumption of separability is almost always satisfied. For example, assuming that $t \mapsto X_t$ is continuous and T is a separable metric space (as is the case in this manuscript), then we can take T_0 to be any countable dense subset of T , allowing us to verify the separability assumption.

For the next theorem, we need $\sup_{t \in T} X_t$ to be measurable. If T is uncountable, the pointwise supremum need not be measurable in general. Under separability, however, we have $\sup_{t \in T} X_t = \sup_{t \in T_0} X_t$ almost surely, and the right-hand side is a supremum of countably many measurable random variables, hence measurable.

Theorem 12 (Dudley). Let $\{X_t\}_{t \in T}$ be a separable subgaussian process in the metric space (T, d) . Then,

$$\mathbb{E} \left[\sup_{t \in T} X_t \right] \leq 6 \sum_{k \in \mathbb{Z}} 2^{-k} \sqrt{\log N(T, d, 2^{-k})}.$$

Proof. We begin by proving the result for the case where $|T| < \infty$. Let $k_0 \in \mathbb{Z}$ be the largest integer such that $2^{-k_0} \geq \text{diam}(T)$. It is clear that for every $t_0 \in T$, the set $N_0 := \{t_0\}$ forms a 2^{-k_0} -net and $\pi_0(t) \equiv t_0$.

For $k > k_0$, let N_k be a 2^{-k} -net such that $|N_k| = N(T, d, 2^{-k})$. We denote $\pi_k(t)$ as the element in N_k that satisfies $d(t, \pi_k(t)) \leq 2^{-k}$. Using a chaining argument up to the scale 2^{-n} , we proceed as follows

$$\begin{aligned} \mathbb{E} \left[\sup_{t \in T} X_t \right] &= \mathbb{E} \left[\sup_{t \in T} \left\{ X_{\pi_0(t)} + \left(\sum_{k=k_0+1}^n X_{\pi_k(t)} - X_{\pi_{k-1}(t)} \right) + X_t - X_{\pi_n(t)} \right\} \right] \\ &\leq \mathbb{E}[X_{t_0}] + \sum_{k=k_0+1}^n \mathbb{E} \left[\sup_{t \in T} \{X_{\pi_k(t)} - X_{\pi_{k-1}(t)}\} \right] + \mathbb{E} \left[\sup_{t \in T} \{X_t - X_{\pi_n(t)}\} \right]. \end{aligned}$$

By definition of subgaussian process, $\mathbb{E}[X_{t_0}] = 0$. Since $|T| < \infty$, we can choose n sufficiently large so that $N_n = T$, and hence $\pi_n(t) = t$, meaning that the third term vanishes. Next, we bound the second term. By definition, $X_{\pi_k(t)} - X_{\pi_{k-1}(t)}$ is a $d(\pi_k(t), \pi_{k-1}(t))$ -subgaussian random variable. We can readily estimate the variance,

$$d(\pi_k(t), \pi_{k-1}(t)) \leq d(\pi_k(t), t) + d(t, \pi_{k-1}(t)) \leq 2^{-k} + 2^{-(k-1)} = 3 \times 2^{-k}.$$

Moreover, we can control the number of terms in the sum, note that $\{X_{\pi_k(t)} - X_{\pi_{k-1}(t)} : t \in T\}$ contains at most $|N_k||N_{k-1}|$ which is bounded by $|N_k|^2$ terms. Applying Maximal Inequality Lemma 3 to these terms, we obtain

$$\begin{aligned} \mathbb{E} \left[\sup_{t \in T} X_t \right] &\leq \sum_{k=k_0+1}^n \sqrt{2d(\pi_k(t), \pi_{k-1}(t))^2 \log |N_k|^2} \leq 6 \sum_{k=k_0+1}^n 2^{-k} \sqrt{\log |N_k|} \\ &\leq 6 \sum_{k=k_0+1}^n 2^{-k} \sqrt{\log N(T, d, 2^{-k})}. \end{aligned}$$

To prove the result when T is infinite, let $T_0 = \{t_1, t_2, \dots\} \subseteq T$ be a countable set witnessing separability, so that $\sup_{t \in T} X_t = \sup_{t \in T_0} X_t$ a.s. For $m \geq 1$ let $T_m := \{t_1, \dots, t_m\}$. Then $\sup_{t \in T_m} X_t \uparrow \sup_{t \in T_0} X_t$ almost surely, and by monotone convergence,

$$\mathbb{E} \left[\sup_{t \in T} X_t \right] = \mathbb{E} \left[\sup_{t \in T_0} X_t \right] = \sup_{m \geq 1} \mathbb{E} \left[\sup_{t \in T_m} X_t \right].$$

Applying the finite case to each T_m and using $N(T_m, d, \epsilon) \leq N(T, d, \epsilon)$ yields the same bound. \square

Corollary (Entropy integral). Let $\{X_t\}_{t \in T}$ be a separable subgaussian process on the metric space (T, d) . Then,

$$\mathbb{E} \left[\sup_{t \in T} X_t \right] \leq 12 \int_0^\infty \sqrt{\log N(T, d, \epsilon)} d\epsilon.$$

Proof. Since $N(T, d, \cdot)$ is decreasing, we obtain the following chains of inequalities

$$\begin{aligned} \sum_{k \in \mathbb{Z}} 2^{-k} \sqrt{\log N(T, d, 2^{-k})} &= 2 \sum_{k \in \mathbb{Z}} \int_{2^{-k-1}}^{2^{-k}} \sqrt{\log N(T, d, 2^{-k})} d\epsilon \\ &\leq 2 \sum_{k \in \mathbb{Z}} \int_{2^{-k-1}}^{2^{-k}} \sqrt{\log N(T, d, \epsilon)} d\epsilon \\ &= 2 \int_0^\infty \sqrt{\log N(T, d, \epsilon)} d\epsilon. \end{aligned}$$

\square

References

Richard Nickl and Benedikt M. Pötscher. Bracketing Metric Entropy Rates and Empirical Central Limit Theorems for Function Classes of Besov- and Sobolev-Type. *Journal of Theoretical Probability*, 20(2):177–199, June 2007. ISSN 1572-9230. doi: 10.1007/s10959-007-0058-1. URL <https://doi.org/10.1007/s10959-007-0058-1>.

Ramon Van Handel. Probability in High Dimension: Technical report, Fort Belvoir, VA, June 2014. URL <http://www.dtic.mil/docs/citations/ADA623999>.