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Abstract
These notes includes a self-contained collection of the most relevant results used in

generalization bounds and empirical process theory.
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1 Preliminaries and Notation

We work on a probability space (Ω,A,P). A random (or stochastic) process is a collection of
random variables {Xt : t ∈ T} indexed by a set T . In many applications T is a subset of the
real line (time), but later we also consider general index sets equipped with a metric.

When T is ordered, a filtration is a family of sub-σ-algebras {Ft}t∈T with Fs ⊆ Ft ⊆ A for
s ≤ t. A process {Xt}t∈T is adapted to {Ft}t∈T if Xt is Ft-measurable for each t. The natural
filtration of {Xt} is Ft := σ({Xs}s≤t).

In discrete time, i.e., T = {0, 1, 2, . . . }, a sequence {Mk}k≥0 is a (discrete) martingale with
respect to {Fk} ifMk is Fk-measurable and E[Mk | Fk−1] =Mk−1 for all k ≥ 1. The increments
Xk :=Mk−Mk−1 then satisfy E[Xk | Fk−1] = 0 and are called a martingale difference sequence.

2 Subgaussian Random Variables

Subgaussian random variables are those whose centered moment generating function is con-
trolled by that of a Gaussian. For a centered normal random variable G ∼ N (0, σ2), we have

E
[
eλG
]
= eσ

2λ2/2.
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The definition below abstracts this inequality as a convenient tail/concentration condition.

Definition 1 (Subgaussian random variable). Let X be a random variable, we define the
log-moment generating function ψ of X as

ψ(λ) := logE[eλ(X−E[X])]

and we say that X random variable is σ2−subgaussian if its log-moment generating function
satisfies ψ(λ) ≤ λ2σ2/2 for all λ ∈ R, and the smallest σ2 for which that holds is called the
variance proxy of X.

The following result is a variant of the Markov’s inequality written in terms of the log-
moment generating function.

Lemma 2 (Chernoff bound). LetX be a σ2−subgaussian random variable. Then, the following
inequality holds

P[X − EX ≥ a] ≤ exp

{
−a2

2σ2

}
.

In particular, P[|X − EX| ≥ a] ≤ 2 exp{−a2/2σ2}.

Proof. We exponentiate inside the probability before applying Markov’s inequality. For any
λ ≥ 0, we have

P[X − EX ≥ a] = P[eλ(X−EX) ≥ eλa] ≤ e−λaE[eλ(X−EX)] = eψ(λ)−λa.

Since this holds for every λ ≥ 0, we can choose λ to obtain the best bound. The optimal choice
is λ = a

σ2 . Substituting this into the inequality and using the bound ψ(λ) ≤ λ2σ2/2, we obtain

P[X − EX ≥ a] ≤ exp

{( a
σ2

)2
σ2/2−

( a
σ2

)
a

}
= exp

{
−a2

2σ2

}
.

Lemma 3 (Maximal inequality). Let {Xk}1≤k≤n be a collection of σ2-subgaussian random
variables with the same variance, satisfying E[Xk] = 0 for all k = 1, . . . , n. Then

E
[
sup

1≤k≤n
Xk

]
≤
√

2σ2 log n.

Proof. Since − log x is convex, by Jensen’s inequality, we have for any λ > 0

E
[
sup
k
Xk

]
= E

[
1

λ
log(eλ supkXk)

]
≤ 1

λ
logE[eλ supkXk ]

≤ 1

λ
log

∑
1≤k≤n

E[eλXk ] ≤ 1

λ
log
(
neλ

2σ2/2
)
=

log n

λ
+
λσ2

2
.

Since this holds for every λ > 0, we can now optimize over λ on the right hand side. Differen-
tiating and setting it equal to zero, we obtain the minimum at λ =

√
2 logn
σ

. Substituting this
value into the equation, we obtain the desired result

E
[
sup

1≤k≤n
Xk

]
≤
√

2σ2 log n.
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Lemma 4 (Hoeffding lemma). Let X be a random variable such that a ≤ X ≤ b a.s. for some
a, b ∈ R. Then,

E[eλ(X−E[X])] ≤ eλ
2(b−a)2/8.

In other words, X is a (b− a)2/4-subgaussian random variable.

Proof. Let us define the mean-centered random variable Y := X−E[X], then ã ≤ Y ≤ b̃ where
ã := a− E[X] and b̃ := b− E[X]. By definition, log-moment generating function of X is given
by ψ(λ) = logE[eλY ], along with its derivatives

ψ′(λ) =
E[Y eλY ]
E[eλY ]

, ψ′′(λ) =
E[Y 2eλY ]

E[eλY ]
−
(
E[Y eλY ]
E[eλY ]

)2

.

We can interpret ψ′′(λ) as the variance of the random variable Y under another probability

measure. We define a new probability measure Q by setting dQ := eλY

E[eλY ]
dP. The definition is

well-posed because the Radon-Nikodym derivative eλY

E[eλY ]
is positive and integrates to 1. From

this, we deduce that

EQ[g(Y )] =
E[g(Y )eλY ]

E[eλY ]
.

Therefore,

VarQ(Y ) = EQ[Y
2]− (EQ[Y ])2 =

E[Y 2eλY ]

E[eλY ]
−
(
E[Y eλY ]
E[eλY ]

)2

= ψ′′(λ).

We can bound the variance of Y as follows

VarQ(Y ) = VarQ(Y − z) ≤ EQ[(Y − z)2].

Since z can be any real number, we let z = (ã+ b̃)/2. Given that ã ≤ Y ≤ b̃ a.s., we obtain

EQ[(Y − z)2] =
1

4
EQ[(2Y − ã− b̃)2] ≤ (b̃− ã)2

4
=

(b− a)2

4
.

Since Y is centered, ψ(0) = 0 and ψ′(0) = E[Y ] = 0. Using the bound ψ′′(λ) ≤ (b−a)2
4

and the
Fundamental Theorem of Calculus, we obtain

ψ(λ) =

∫ λ

0

∫ µ

0

ψ′′(ρ)dρdµ ≤ λ2(b− a)2

8
.

Therefore, X is a σ2-subgaussian random variable with σ2 = (b− a)2/4.

3 Martingale Concentration and Bounded Differences

Hoeffding’s lemma gives subgaussian bounds for bounded random variables. Combined with
a filtration and a martingale difference sequence, it yields concentration for dependent sums
(Azuma–Hoeffding). A standard application is McDiarmid’s bounded differences inequality for
functions of independent variables.
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Lemma 5 (Azuma). Let {Xk}1≤k≤n be a stochastic process adapted to the natural filtration
{Fk}1≤k≤n, i.e., Fk = σ(X1, . . . , Xk). Assume that the random variables satisfy:

E[eλXk | Fk−1] ≤ eλ
2σ2

k/2 a.s. for all λ ∈ R, k = 1, . . . , n. (1)

where σ2
k ≥ 0 is a (deterministic) variance proxy for Xk. Then, E[Xk | Fk−1] = 0 (and hence

E[Xk] = 0) and the sum
∑n

k=1Xk is σ2-subgaussian with variance proxy σ2 :=
∑n

k=1 σ
2
k.

Proof. First, we prove that E[Xk | Fk−1] = 0. Since equality holds in (1) at λ = 0, differentiating
both sides at λ = 0 yields

E[Xk | Fk−1] =
d

dλ

∣∣∣
λ=0

E
[
eλXk | Fk−1

]
≤ d

dλ

∣∣∣
λ=0

eλ
2σ2

k/2 = 0.

Applying the same argument to −Xk gives E[−Xk | Fk−1] ≤ 0, hence E[Xk | Fk−1] = 0.
Next, we bound the moment generating function of Sk :=

∑k
i=1Xi. Since Sk−1 is Fk−1-

measurable, the tower property gives

E[eλSk ] = E
[
E
[
eλSk−1eλXk | Fk−1

]]
= E

[
eλSk−1E

[
eλXk | Fk−1

]]
≤ eλ

2σ2
k/2 E[eλSk−1 ].

Iterating this inequality yields E[eλSn ] ≤ eλ
2
∑n

i=1 σ
2
i /2 = eλ

2σ2/2. Since E[Sn] = 0, this is exactly
the subgaussian bound for Sn.

Corollary 6 (Azuma-Hoeffding inequality). Let {Fk}1≤k≤n be a filtration and let {Xk}1≤k≤n
be an adapted process such that E[Xk | Fk−1] = 0 for k = 1, . . . , n. Assume that there exist
Fk−1-measurable random variables Ak, Bk such that Ak ≤ Xk ≤ Bk a.s.

Then,
∑n

k=1Xk is σ2-subgaussian with σ2 = 1
4

∑n
k=1 ∥Bk − Ak∥2∞. In particular, for every

t ≥ 0,

P

[
n∑
k=1

Xk ≥ t

]
≤ exp

(
− 2t2∑n

k=1 ∥Bk − Ak∥2∞

)
.

The same bound holds for P [|
∑n

k=1Xk| ≥ t] up to an extra factor 2.

Proof. Conditionally on Fk−1, the bounds Ak ≤ Xk ≤ Bk are deterministic and E[Xk | Fk−1] =
0. Applying Hoeffding’s Lemma 4 to this conditional distribution yields, for all λ ∈ R,

E
[
eλXk | Fk−1

]
≤ exp

(
λ2(Bk − Ak)

2

8

)
≤ exp

(
λ2∥Bk − Ak∥2∞

8

)
.

Therefore (1) holds with σ2
k = ∥Bk − Ak∥2∞/4, and Lemma 5 implies that

∑n
k=1Xk is σ2-

subgaussian with σ2 = 1
4

∑n
k=1 ∥Bk − Ak∥2∞.

The one-sided tail bound follows from Lemma 2 (applied to
∑n

k=1Xk), and the two-sided
bound follows by also applying it to −

∑n
k=1Xk.

Definition 7 (Discrete derivative). Let f ∈ C(Rn,R). We define the discrete derivative of f
with respect to variable xk at the point x ∈ Rn as follows:

Dkf(x) := sup
z
f(x1, . . . , xk−1, z, xk+1, . . . , xn)− inf

z
f(x1, . . . , xk−1, z, xk+1, . . . , xn).
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Theorem 8 (McDiarmid). Let X1, . . . , Xn be independent random variables and let f ∈
C(Rn,R). Then, f(X1, . . . , Xn) is σ2-subgaussian with σ2 = 1

4

∑n
k=1 ∥Dkf∥2∞ where Dkf is

the discrete derivative (Definition 7).

Proof. Let Fk := σ(X1, . . . , Xk) be the natural filtration and define the Doob martingale

Mk := E[f(X1, . . . , Xn) | Fk], k = 0, 1, . . . , n.

Set Yk :=Mk −Mk−1 for k = 1, . . . , n. Then E[Yk | Fk−1] = 0 and the sum telescopes to

n∑
k=1

Yk = f(X1, . . . , Xn)− Ef(X1, . . . , Xn). (2)

Fix k ∈ {1, . . . , n}. Define the Fk−1-measurable function

hk(z) := E[f(X1, . . . , Xk−1, z,Xk+1, . . . , Xn) | Fk−1] .

By independence, Mk = hk(Xk) and Mk−1 = E[hk(Xk) | Fk−1]. Let

ℓk := inf
z
hk(z), uk := sup

z
hk(z).

Then ℓk ≤Mk ≤ uk and ℓk ≤Mk−1 ≤ uk, hence

ℓk −Mk−1 ≤ Yk ≤ uk −Mk−1.

Therefore Ak := ℓk−Mk−1 and Bk := uk−Mk−1 are Fk−1-measurable and satisfy Ak ≤ Yk ≤ Bk

almost surely, with

Bk − Ak = uk − ℓk ≤ E[Dkf(X1, . . . , Xn) | Fk−1] ≤ ∥Dkf∥∞.

Applying the Azuma–Hoeffding inequality (Corollary 6) to
∑n

k=1 Yk and using (2) concludes
the proof.

4 Metric Entropy: Covering and Packing Numbers

To control suprema of random processes indexed by a metric space, we need a notion of the
“size” or “complexity” of the index set (E, d). Covering and packing numbers capture this
idea by counting how many metric balls are needed to cover a set, or how many well-separated
points it contains (Figure 1).

Definition 9 (ϵ−net and covering number). A set N ⊆ E is called a ϵ−net for (E, d) if for
every x ∈ E, there exists π(x) ∈ N such that d(x, π(x)) ≤ ϵ. The smallest cardinality of an
ϵ-net for (E, d) is called the covering number

N(E, d, ϵ) := inf{|N | : N is an ϵ−net for (E, d)}.

Definition 10 (ϵ−packing and packing number). A set N ⊆ E is called an ϵ−packing of (E, d)
if d(x, x′) > ϵ for every x, x′ ∈ N , x ̸= x′. The largest cardinality of an ϵ−packing of (E, d) is
called the packing number

D(E, d, ϵ) := sup{|N | : N is an ϵ−packing of (E, d).}.
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(a) The ellipse represents E and the red dots are
the elements of an ϵ-net. The circles are balls of
radius ϵ covering the set.

(b) The optimal packing problem in a
square using the blue balls.

Figure 1: Packing vs Covering number

In the literature, the binary logarithm of the covering number of a set E is commonly
referred to as the ϵ−entropy of E, denoted by

Hϵ(E) := log2N(E, d, ϵ).

Similarly, the binary logarithm of the packing number is typically called the ϵ−capacity of
E, defined as

Cϵ(E) := log2D(E, d, ϵ).

The base-2 logarithm is common in information-theoretic contexts, where the natural unit is
the bit.

The following lemma illustrates the relationship between the covering number and the pack-
ing number.

Lemma (Duality between covering and packing number). For every ϵ > 0

D(E, d, 2ϵ) ≤ N(E, d, ϵ) ≤ D(E, d, ϵ).

Proof. (1) Let D be a 2ϵ−packing and let N be an ϵ−net. For every x ∈ D, choose π(x) ∈ N
such that d(x, π(x)) ≤ ϵ. Then, for every x′ ∈ D such that x ̸= x′, we have

2ϵ < d(x, x′) ≤ d(x, π(x)) + d(π(x), π(x′)) + d(π(x′), x′) ≤ 2ϵ+ d(π(x), π(x′)),

which implies that π(x) ̸= π(x′) (see Figure 2). Thus, the function π : D → N is injective, and
thus, |D| ≤ |N |. In other words, D(E, d, 2ϵ) ≤ N(E, d, ϵ).

(2) Let D be a maximal ϵ−packing with |D| = D(E, d, ϵ). We claim that D is necessarily an
ϵ−net. Indeed, suppose for contradiction that there exists a point x ∈ E such that d(x, x′) > ϵ
for every x′ ∈ D. This would imply that D ∪ {x} is a larger ϵ−packing, contradicting the
maximality of D. Therefore, every point in E must be within a distance at most of ϵ from some
point in D, confirming that D is an ϵ−net.
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Figure 2: distance between x and x′.

We are now ready to establish an upper bound on the covering number of the Euclidean
ball Bn

2 with respect to the Euclidean distance. The proof of this fundamental result employs
a clever technique known as a volume argument.

Lemma. Let Bn
2 be the n-dimensional Euclidean ball centered at zero with radius 1, i.e.,

Bn
2 := {x ∈ Rn : ∥x∥2 < 1}. Then, N(Bn

2 , ∥ · ∥2, ϵ) = 1 for ϵ ≥ 1 and(
1

ϵ

)n
≤ N(Bn

2 , ∥ · ∥2, ϵ) ≤
(
3

ϵ

)n
for 0 < ϵ < 1.

Proof. Case ϵ ≥ 1: For ϵ ≥ 1, we have N(Bn
2 , ∥ · ∥2, ϵ) = 1 since {0} is an ϵ-net: ∥x∥2 < 1 ≤ ϵ

for every x ∈ Bn
2 .

Case 0 < ϵ < 1: We begin with the upper bound. Let D be a 2ϵ-packing of Bn
2 . Since

∥x − x′∥2 > 2ϵ for all x ̸= x′ in D, the balls {B(x, ϵ) : x ∈ D} are disjoint. Moreover, for any
x ∈ Bn

2 we have B(x, ϵ) ⊆ B(0, 1 + ϵ). Therefore,∑
x∈D

λ(B(x, ϵ)) = λ

(⋃
x∈D

B(x, ϵ)

)
≤ λ(B(0, 1 + ϵ))

where λ denotes Lebesgue measure on Rn. Using homogeneity λ(B(0, α)) = αnλ(B(0, 1)), we
obtain

|D|λ(B(0, ϵ)) ≤ λ(B(0, 1 + ϵ)) ⇒ |D| ϵnλ(B(0, 1)) ≤ (1 + ϵ)nλ(B(0, 1)).

Therefore,

|D| ≤
(
1 + ϵ

ϵ

)n
.

We have established that for every 2ϵ-packing D of Bn
2 , we obtain an upper bound for D(Bn

2 , ∥ ·
∥2, 2ϵ). This leads to the following chain of inequalities

N(Bn
2 , ∥ · ∥2, 2ϵ)

Lemma 4

≤ D(Bn
2 , ∥ · ∥2, 2ϵ) ≤

(
1 +

1

ϵ

)n
≤
(

3

2ϵ

)n
for 2ϵ < 1.

Relabeling 2ϵ as ϵ completes the proof.
We proceed similarly to obtain the lower bound. Let N be an ϵ−net for Bn

2 . Then,

λ(Bn
2 ) ≤ λ

(⋃
x∈N

B(x, ϵ)

)
≤
∑
x∈N

λ(B(x, ϵ)) = |N |λ(B(0, ϵ)).

Hence,

|N | ≥ λ(B(0, 1))

λ(B(0, ϵ))
=

(
1

ϵ

)n
.

This inequality holds for every ϵ-net N , so we conclude that N(Bn
2 , ∥ · ∥2, ϵ) ≥ (1/ϵ)n.
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The following Lemma finds a bound for the growing rate of the ϵ−entropy of the Sobolev
space Hm+1. The proof can be found in [Nickl and Pötscher, 2007, Corollary 4].

Lemma (ϵ-Entropy of Hm+1(Ω,Rd2)). Let Ω ⊆ Rd2 be a Lipschitz domain. For m ≥ 1, one
has

logN(BHm+1(Ω)(1), ∥ · ∥Hm+1(Ω), ϵ) = Oϵ→0(ϵ
−d2/(m+1)).

5 Subgaussian Processes and Chaining

We now return to random processes indexed by a metric space (T, d). Dudley’s inequality
bounds E[supt∈T Xt] for a subgaussian process in terms of the metric entropy of (T, d), as
developed in the previous section.

Definition 11 (Subgaussian process). A random process {Xt}t∈T on a metric space (T, d) is
called subgaussian if E[Xt] = 0 for all t ∈ T and

E[eλ(Xt−Xs)] ≤ eλ
2d(t,s)2/2 for all t, s ∈ T, λ ∈ R. (3)

Notice that for every s, t ∈ T , the random variable Xt−Xs is a d(t, s)
2-subgaussian random

variable.

Definition (Separable process). A random process {Xt}t∈T is called separable (with respect
to d) if there exists a countable set T0 ⊆ T such that for every t ∈ T there exists a sequence
{tn}n∈N ⊆ T0 with d(tn, t) → 0 and Xtn → Xt almost surely.

Remark. The assumption of separability is almost always satisfied. For example, assuming
that t→ Xt is continuous and T is a separable metric space (as is the case in this manuscript),
then we can take T0 to be any countable dense subset of T , allowing us to verify the separability
assumption.

For the next theorem, we need supt∈T Xt to be measurable. If T is uncountable, the pointwise
supremum need not be measurable in general. Under separability, however, we have supt∈T Xt =
supt∈T0 Xt almost surely, and the right-hand side is a supremum of countably many measurable
random variables, hence measurable.

Theorem 12 (Dudley). Let {Xt}t∈T be a separable subgaussian process in the metric space
(T, d). Then,

E
[
sup
t∈T

Xt

]
≤ 6

∑
k∈Z

2−k
√

logN(T, d, 2−k).

Proof. We begin by proving the result for the case where |T | < ∞. Let k0 ∈ Z be the largest
integer such that 2−k0 ≥ diam(T ). It is clear that for every t0 ∈ T , the set N0 := {t0} forms a
2−k0−net and π0(t) ≡ t0.

For k > k0, let Nk be a 2−k−net such that |Nk| = N(T, d, 2−k). We denote πk(t) as the
element in Nk that satisfies d(t, πk(t)) ≤ 2−k. Using a chaining argument up to the scale 2−n,
we proceed as follows

E
[
sup
t∈T

Xt

]
= E

[
sup
t∈T

{
Xπ0(t) +

(
n∑

k=k0+1

Xπk(t) −Xπk−1(t)

)
+Xt −Xπn(t)

}]

≤ E[Xt0 ] +
n∑

k=k0+1

E
[
sup
t∈T

{Xπk(t) −Xπk−1(t)}
]
+ E

[
sup
t∈T

{Xt −Xπn(t)}
]
.

8



By definition of subgaussian process, E[Xt0 ] = 0. Since |T | < ∞, we can choose n sufficiently
large so that Nn = T , and hence πn(t) = t, meaning that the third term vanishes. Next,
we bound the second term. By definition, Xπk(t) − Xπk−1

(t) is a d(πk(t), πk−1(t))-subgaussian
random variable. We can readily estimate the variance,

d(πk(t), πk−1(t)) ≤ d(πk(t), t) + d(t, πk−1(t)) ≤ 2−k + 2−(k−1) = 3× 2−k.

Moreover, we can control the number of terms in the sum, note that {Xπk(t) −Xπk−1(t) : t ∈ T}
contains at most |Nk||Nk−1| which is bounded by |Nk|2 terms. Applying Maximal Inequality
Lemma 3 to these terms, we obtain

E
[
sup
t∈T

Xt

]
≤

n∑
k=k0+1

√
2d(πk(t), πk−1(t))2 log |Nk|2 ≤ 6

n∑
k=k0+1

2−k
√
log |Nk|

≤ 6
n∑

k=k0+1

2−k
√

logN(T, d, 2−k).

To prove the result when T is infinite, let T0 = {t1, t2, . . . } ⊆ T be a countable set witnessing
separability, so that supt∈T Xt = supt∈T0 Xt a.s. For m ≥ 1 let Tm := {t1, . . . , tm}. Then
supt∈Tm Xt ↑ supt∈T0 Xt almost surely, and by monotone convergence,

E
[
sup
t∈T

Xt

]
= E

[
sup
t∈T0

Xt

]
= sup

m≥1
E
[
sup
t∈Tm

Xt

]
.

Applying the finite case to each Tm and using N(Tm, d, ϵ) ≤ N(T, d, ϵ) yields the same bound.

Corollary (Entropy integral). Let {Xt}t∈T be a separable subgaussian process on the metric
space (T, d). Then,

E
[
sup
t∈T

Xt

]
≤ 12

∫ ∞

0

√
logN(T, d, ϵ)dϵ.

Proof. Since N(T, d, ·) is decreasing, we obtain the following chains of inequalities∑
k∈Z

2−k
√

logN(T, d, 2−k) = 2
∑
k∈Z

∫ 2−k

2−k−1

√
logN(T, d, 2−k)dϵ

≤ 2
∑
k∈Z

∫ 2−k

2−k−1

√
logN(T, d, ϵ)dϵ

= 2

∫ ∞

0

√
logN(T, d, ϵ)dϵ.
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